生物学杂志 ›› 2022, Vol. 39 ›› Issue (2): 11-.doi: 10.3969/j.issn. 2095-1736.2022.02.011

• 研究报告 • 上一篇    下一篇

内源性类氧化酶Pt@ MXene复合材料(PMCs)纳米酶用于杀菌与伤口愈合

  

  1. 1. 中国科学院合肥物质科学研究院 智能机械研究所 强磁场与离子束物理生物学重点实验室 安徽省
    环境毒理学与污染控制技术重点实验室, 合肥 230031; 2. 中国科学技术大学研究生院科学岛分院,
    合肥 230026
  • 出版日期:2022-04-18 发布日期:2022-04-15
  • 通讯作者: 黄青,博士,研究员,研究方向为生物物理,E-mail: huangq@ipp.ac.cn
  • 作者简介:刘超,硕士研究生,研究方向为生物材料,E-mail: aliza97@mail.ustc.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 11635013)

Intrinsic oxidase-like nanozyme of Pt@ MXene composites (PMCs) for killing bacteria, disinfecting wound

  1. 1. CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental
    Toxicology and Pollution Control Technology, Institute of Intelligent Machines, Hefei Institutes of Physical Science,
    Chinese Academy of Sciences, Hefei 230031, China; 2. Science Island Branch of Graduate School,
    University of Science & Technology of China, Hefei 230026, China
  • Online:2022-04-18 Published:2022-04-15

摘要: 为了开发具有高抗菌活性和生物相容性且对公众健康和安全有较高要求的杀菌材料,成功合成了一种新型纳米酶复合材料,即具有类氧化酶活性的 Pt@ MXene 复合材料 (PMCs),并开展了应用PMCs以高效抑制革兰氏阳性金黄色葡萄球菌(Staphylococcus aureus)和革兰氏阴性大肠杆菌(Escherichia coli)的研究。抗菌机理研究表明,PMCs既具有类氧化酶及相应电子传递能力,又具有较大的比表面积,且有显著的抑制细菌生长的效果。此外,动物实验表明,该材料表现出优异的伤口愈合能力,并具有良好的生物相容性。研究提出了一种新型纳米酶抗菌复合材料的制备方法,探索了纳米酶灭菌的作用机理,并展示了该材料在抑菌和伤口愈合治疗中良好的应用潜力。

关键词: 纳米酶; 抑菌; Pt@ , MXene; 伤口愈合; 电子转移

Abstract: To develop antibacterial materials with high antibacterial activity and biocompatibility of high demand for public health and safety, in this work, we have successfully synthesized Pt@ MXene composites (PMCs),which possess excellent oxidase-like activity and show the activity of inhibition of both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) with high efficiency. The antibacterial mechanism revealed that PMCs had both excellent oxidation enzyme activity with corresponding electron transfer ability and large specific surface area, which led to the effective inhibition of the growth of bacteria. Moreover, the designed system showed excellent wound healing ability in vivo with good biocompatibility. Therefore, this work has not only proposed an effective way in designing and exploring nanozyme-like antibacterial materials, but also demonstrated the promising potential of application of PMCs in disinfection and wound-healing therapy.

Key words: nanozymes, antibacterial, Pt@ MXene, wound healing, electron transfer

中图分类号: